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ABSTRACT: Storm displacement errors can arise from a number of potential sources of error within a data assimilation
(DA) and forecast system. Conversely, storm displacement errors can cause issues for storm-scale, ensemble-based systems
using an ensemble Kalman filter (EnKF), such as NSSL’s Warn-on-Forecast System (WoFS). A previous study developed
a fully grid-based feature alignment technique (FAT) to mitigate these phase errors and their impacts. However, that study
developed and tested the FAT for single-storm cases. This study advances that work by implementing an object-based
merging and matching technique into the FAT and tests the updated FAT in more complex scenarios of multiple storms.
Ensemble-based experiments are conducted with and without the FAT for each of the scenarios. The experiments’ analy-
ses and forecasts of storm-related fields are then evaluated using subjective and objective methods. Results from these ide-
alized multiple-storm experiments continue to reveal the potential benefits of correcting storm displacement errors. For
example, running the FAT even once can mitigate the “spinup” period experienced by the no-FAT experiments. The new
results also show that running the FAT prior to every DA cycling step generally leads to more skillful forecasts at the
smaller scales, especially in earlier-initialized forecasts. However, repeatedly running the FAT prior to every DA step can
eventually lead to deterioration in analyses and forecasts. Potential solutions to this problem include using longer cycling
intervals and running the FAT prior to DA less often. Additional ways to improve the FAT along with other results are
presented and discussed.

SIGNIFICANCE STATEMENT: The purpose of this work is to explore the impact of correcting storm displacements
on analyses and forecasts of storms using an ensemble-based data assimilation and forecast system in an idealized
framework. Storm displacement errors are a common problem in current operational and experimental storm-scale
forecast systems, so understanding their impact on these systems and providing a method to help mitigate them is im-
portant. Results from this study indicate that correcting storm displacement errors with the feature alignment technique
can greatly improve analyses and forecasts in multiple-storm scenarios. Future work will focus on exploring the impact
of correcting storm displacement errors in a real-data, storm-scale data assimilation and forecast system.

KEYWORDS: Kalman filters; Ensembles; Forecast verification/skill; Short-range prediction; Data assimilation;
Idealized models; Numerical weather prediction/forecasting

1. Introduction

A goal of storm-scale, ensemble-based data assimilation
(DA) and forecast systems, such as the National Severe Storms
Laboratory’s Warn-on-Forecast System (WoFS; Stensrud et al.
2009, 2013; Skinner et al. 2018; Jones et al. 2020), is to provide
probabilistic location and timing guidance about severe storms
and their associated hazards. The experimental WoFS has had
many successes at providing accurate and reliable probabilistic
forecasts of severe convective weather (e.g., Skinner et al.
2018; Jones et al. 2019; Flora et al. 2019; Yussouf et al. 2020).
However, forecast storm motion biases are still a common
issue for the WoFS (Wheatley et al. 2015; Skinner et al. 2018;
Flora et al. 2019). These storm motion biases can develop due
to numerous sources of errors within the data assimilation and
model systems (Houtekamer and Zhang 2016). For example,
storm motion biases can develop due to coarse model grid

spacing (e.g., Potvin and Flora 2015) and parameterized
model physics (e.g., Stratman and Brewster 2017; Potvin
et al. 2020). Conversely, the storm motion biases can lead
to storm displacement errors, which can cause issues for
DA-forecast systems.

A common DAmethod used for storm-scale, ensemble-based
forecast systems, including the WoFS, is the ensemble Kalman
filter (EnKF; Evensen 1994). EnKF performs best when the
model is linear and the prior distribution is Gaussian. While nei-
ther is true in systems like the WoFS, storm displacement errors
still add another layer of nonlinearity/non-Gaussianity, which
can prevent EnKF from performing more optimally. Stratman
et al. (2018, hereafter S18) showed storm displacement errors
can lead to model imbalances and subsequent issues with fore-
cast storm development and propagation. To minimize these er-
rors, S18 developed a grid-based feature alignment technique
(FAT) for storm-scale, limited-size domains based on similar
techniques developed by Nehrkorn et al. (2014) and Nehrkorn
et al. (2015) to correct for the storm displacement errors. The
FAT solves for a 2D field of displacement vectors by
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variationally minimizing the difference between observa-
tions (e.g., composite reflectivity) and a background field.
The displacement vectors are then used to update the model
state variables by adjusting the fields at all model levels. Be-
cause the FAT is run prior to DA, the observations are
more optimally assimilated by the EnKF due to reducing
the spatial errors.

This study expands on S18, which only focused on experi-
ments with correcting the location of a single storm, by modi-
fying the FAT to handle multiple storms. S18 used a first-guess
field of displacement vectors to reduce the influence of non-
global minima (Brewster 2003). However, to form the first
guess field, S18 computed the centers of mass for thresholded
observation and forecast fields valid over the entire domain
since only one object existed in each field. While this method
works well in single-storm scenarios, it can fail when multiple
storms are present. Thus, an object-based merging and matching
method is developed to account for the presence of multiple
storms}and potentially differing numbers of observed and
forecast storms}when forming the first-guess field of displace-
ment vectors.

The new FAT is tested in various multiple-storm scenarios
in an idealized framework using observing system simulation
experiments (OSSEs). An overview of the FAT along with the
modifications to the process can be found in section 2. Details
about the design of the OSSEs are described in section 3. Re-
sults from the experiments are presented in section 4. Finally,
a summary and discussion of the results and potential future
work can be found in section 5.

2. Updated FAT

a. Overview of the FAT

As described in S18, the FAT solves for a 2D field of dis-
placement vectors by minimizing a cost function between a
background forecast and observations. The minimization is
performed using a nonlinear conjugate gradient method
based on Polak and Ribière (1969). The cost function,

J � Jr 1 ksJs 1 kdJd 1 kmJm 1 kbJb, (1)

is composed of a residual error term Jr and four constraint
terms. The residual error function,

Jr �
∑ y(i, j) 2 x(i 1 a, j 1 b)[ ]2

s2
o

, (2)

is the summation of squared differences between the back-
ground forecasts x and observations y, weighted by the obser-
vational error variance s2

o . The function is minimized by
solving for the i- and j-direction displacement components a
and b, respectively. The smoothness constraint,
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smooths out the gradient of displacement components. The
divergence constraint,
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i

1
b
j

( )2
, (4)

prevents the convergence and divergence of displacement com-
ponents. The magnitude constraint,

Jm � ∑ a
S

( )2
1

∑ b
S

( )2
, (5)

increasingly penalizes displacement components as |a| and |b|
approach the displacement magnitude limit S and acts to sup-
press displacement components in data-void areas. The barrier
constraint,

Jb � ∑ a
S

( )20
1

∑ b
S

( )20
, (6)

severely penalizes displacement components with |a| and |b|
greater than S. In this study, the barrier constraint does not
have an impact on the displacement components due to the
maximum |a| and |b| being much smaller than S, but this con-
straint term is retained since it could be useful in future real-
data applications. The constraint functions are weighted with
coefficients ks, kd, km, and kb, respectively. As in S18, the 2D
field of displacement vectors are computed using forecast and
observed column-maximum reflectivity, which have been
placed on the same 2D grid of i, j indices.

As in Nehrkorn et al. (2014) and S18, the FAT runs as a
standalone program prior to data assimilation for each ensemble
member and is composed of the following general steps:

1) Read in background forecast and observed column-maximum
reflectivity fields.

2) Form a first-guess field of displacement vectors using an
object-based merging and matching method.

3) Run the nonlinear conjugate gradient minimization function
to solve for the final 2D field of displacement vectors.

4) Update all of the model state variables using the 2D field
of displacement vectors and output to new background
forecast files.

The object-based merging and matching technique will be
described in the following section. The nonlinear conjugate
gradient minimization is performed by the “fmin_cg” function
in SciPy’s “optimize” module. The final 2D fields of a and b
are added to the original i, j grid indices, respectively, to
yield an adjusted field of grid indices. The “RegularGrid
Interpolator” function in SciPy’s “interpolate” module is then
used to interpolate the model state variables at all vertical lev-
els from the original grid indices to the new adjusted grid
indices.

b. FAT modifications

A majority of the changes to the FAT are related to the
creation of the first-guess field of displacement vectors. As in
S18, the updated FAT initializes the 2D grid of displacement
vectors with small random values with a distribution centered
on zero. However, the rest of the first guess generation pro-
cess has been modified from S18 to account for multiple
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observed and forecast storms and improve the final displace-
ment vector field. S18 thresholded the original observed and
forecast fields and found their centers of mass. The observed
and forecast fields were then smoothed using a Gaussian
smoother, and the vector between the centers of mass was
used to fill the area covered by the smoothed fields. This
method works well for a single pair of observed and forecast
storms, but is inappropriate when multiple storms exist in the
observed and/or forecast fields. For example, given a scenario
in which there are three storms in the observed field but only
one storm in the forecast field, the three storms in the ob-
served field would be considered one object. Thus, the old
FAT would have unrealistically stretched the forecast storm
to fill the combined areas of the observed storms.

To account for multiple-storm scenarios, we develop an
object-based merging and matching technique}similar to
those used in object-based verification methods (e.g., Skinner
et al. 2018)}to form matched observed-forecast storm pairs,
then compute the initial displacement vectors for each pair.
In the first step of the object-based merging and matching
procedure, the observed and forecast fields (Fig. 1a) are
masked using a threshold, varmin, and smoothed using a
Gaussian smoother with a standard deviation s1 (Fig. 1b).
The smoothed observed and forecast fields are then normal-
ized using the maximum value in the original observed field,

as in S18. This first smoothing step merges storms that are
close together into a single object for the object matching
step, which is next.

Observed and forecast objects are identified and matched
from the thresholded smoothed fields as follows. First, bi-
nary and thresholded fields are created from the smoothed
observed and forecast fields using a different masking
threshold, smthmin (Fig. 1c). The number of distinct binary
objects and their labels are determined using the “label”
function in scikit-image’s “measure” module. The field of
labels for the observed and forecast binary fields along with
their thresholded smoothed fields are then input to the
measure module’s “regionprops” function to determine a
plethora of object attributes, such as area and centroid loca-
tion. Next, observed and forecast objects are matched to-
gether. Only objects with areas greater than a threshold,
areamin, are considered for matching to avoid matching
small, possibly spurious storms. Remaining observed and
forecast objects with the smallest distances between their
centroid locations are matched together if their distance is
less than the maximum allowable distance, distmax.

Now that we have our matched objects, the following
process is carried out for each pair of matched objects to
determine their respective displacement vector fields and
their weights, which are used when the individual fields of

FIG. 1. Schematic showing the process of creating the first-guess field of displacement vectors. (a) Original forecast (color shading) and
observed (gray contours) reflectivity fields. Thicker black and gray contours highlight the varmin threshold for both fields, respectively.
(b) Smoothed forecast (color shading) and observed (gray dashed contours) reflectivity fields using a Gaussian filter with the standard
deviation s1. (c) Forecast (gray shading) and observed (gray contours) binary fields, which are created from thresholding the smoothed
fields using smthmin. Black arrows represent the displacements between the forecast and observed centroids. (d) Remaining forecast–
observed object pairs. (e) Smoothed forecast (color shading) and observed (gray dashed contours) reflectivity fields using a Gaussian fil-
ter with the standard deviation s2. (f) Forecast (solid contours) and observed (dashed contours) binary fields, which are created from
thresholding the smoothed fields using smthmin. The convex hull area is shaded for each of the matched-object pairs. (g) Displacement
vectors and convex hull areas (color shading) for each of the matched-object pairs. (h) Final field of first-guess displacement vectors and
the smoothed forecast (color shading) and observed (gray contours) reflectivity fields.
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displacement vectors are merged together. First, objects in the
original observed and forecast fields other than the matched
object pair are masked out using the object labels generated
during the object identification (Fig. 1d). Then, the masked
fields are thresholded using varmin and smoothed using a
Gaussian smoother with a larger standard deviation s2, than
used in the previous smoothing step (Fig. 1e). The new
smoothed observed and forecast fields are next input into the
object identification and matching routine to determine the
new object centroid locations and object label fields. Ob-
served and forecast binary fields are created from the
smoothed fields using the threshold smthmin, and then
merged together using the object label fields as masks.
Next, the convex hull field of the merged binary field is de-
termined using the “convex_hull_image” function in scikit-
image’s “morphology” module (Fig. 1f). The displacement
vector from the forecast centroid to the observed centroid
is then applied to the grid points within the convex hull
area (Fig. 1g).

Finally, the first-guess fields of displacement vectors for
each pair of matched objects are blended to form the final
first-guess field (Fig. 1h). In areas where displacement vectors
exist for only one pair of matched objects, those displacement
vectors are assigned to the final first-guess field. In areas
where displacement vectors were computed for multiple
observed–forecast object pairs, the displacement vector fields
are averaged together using a Gaussian weighting function,
which gives more weight to the displacement vectors closest to
their associated forecast object’s centroid. The individual
smoothed object fields are merged together to form the final
observed and forecast fields for use in the cost function
minimization (Fig. 1h). The initial small random displacement
vectors are maintained for grid points outside of any pair of
matched objects’ convex hull area.

S18 found that displacement vectors undesirably extended
beyond the edge of the domain. They corrected the issue by
reducing the magnitudes of the vectors that extended beyond
the edge of the domain. However, we subsequently attributed
the undesirable extensions of displacement vectors outside the
domain to the cost function excluding vectors less than three
grid points from the domain edge, which in turn arose from
the finite differencing stencil used. To mitigate this issue in the
updated FAT, the domain over which the cost function is min-
imized is expanded based on the gridpoint thinning factor. For
example, if the original domain is thinned by a factor of 2 for
the minimization as in S18, the domain used in the cost func-
tion minimization would need to be expanded by 4 grid points
on all sides}i.e., a 1003 100 gridpoint domain would become
a 108 3 108 gridpoint domain prior to thinning the domain by
a factor of 2 so that the cost function includes displacement
vectors out to the boundaries of the original domain. Using
the expanded cost function minimization domain smooths the
gradients of the displacement vectors near the domain edges,
thereby helping prevent displacement vectors from extending
beyond the domain edges.

In addition to the changes made to the formation of the first-
guess field of displacement vectors, a couple of checks were
added to prevent the FAT from applying unwanted updates to

the model state variables. First, the FAT will not update the
model state variables if the maximum vector in the final field
of displacement vectors is smaller than the minimum vector
threshold, vectmin. If set, this threshold can prevent unneces-
sary and possibly problematic minor adjustments to the model
state variables. For another check, the model state variables
are not updated if the root-mean-squared error (RMSE) be-
tween the observed and forecast fields increases after applying
the displacement vectors. This occurrence is unlikely, but if there
are, for example, 2 matched forecast storms and 1 unmatched
forecast storm, the final displacement vectors from the matched
storms could erroneously alter the unmatched storm. In this sce-
nario, the RMSE could undesirably increase.

3. Experiment design

a. Truth run(s)

Prior to running OSSEs, high-resolution simulations are
performed to provide synthetic observations for data assimila-
tion and verification fields for the analyses and forecasts.
These Truth simulations are generated using version 3.9.1.1 of
the Advanced Research version of the Weather Research and
Forecasting (WRF) Model (WRF-ARW; Skamarock et al.
2008) in an idealized setting on a 1201 3 1201 3 67 gridpoint
domain with a horizontal grid spacing of 250 m. The vertical
grid spacing is 100 m below 1 km and is stretched from 100 m
at 1 km AGL to 800 m at the model top of ∼25 km. The simu-
lations are initialized from a homogenous environment pro-
vided by the same 24 May 2011 “El Reno tornado”
thermodynamic profile used in S18 (Fig. 2a), but the default
wind profile in this study has been modified from S18 to yield
more easterly storm motions for all experiment scenarios, which
will be described in section 3d (Figs. 2b–d). To generate multi-
ple storms within each simulation, 5-K warm bubbles with hori-
zontal radii of 10 km and vertical radii of 1.5 km are added to
the initial fields at 1.5 km AGL. The Truth runs are performed
for 3 h of simulation time using a 1-s time step. The NSSL
three-moment microphysics scheme (Mansell et al. 2020) with a
base cloud condensation nuclei concentration of 1000 cm23 is
used to provide more realistic reflectivity observations.

Synthetic reflectivity and radial velocity observations are cre-
ated from the Truth runs using observation converter programs
in National Center for Atmospheric Research’s (NCAR) Man-
hattan release of the Data Assimilation Research Testbed
(DART; Anderson et al. 2009). The reflectivity and radial ve-
locity observations are interpolated onto a “grid-tilt” domain
defined by a horizontal grid spacing of 3 km, which is the same
grid spacing used for the OSSEs, and 14 elevation angles from
0.58 to 19.58, which radiate from a simulated radar located at
the center of the domain. Observations are only generated be-
low 10 km AGL and within 150-km horizontal distance of the
simulated radar. Areas where reflectivity , 10 dBZ}referred
to herein as clear-air reflectivity}are set to 0 dBZ and thinned
to every third grid point. Also, radial velocity observations are
omitted where reflectivity , 10 dBZ. The remaining reflectivity
and radial velocity observations are included in DART-format-
ted observation sequence files for assimilation. Drawing from
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Gaussian distributions with zero means, observation error stan-
dard deviations of 2 dBZ for reflectivity and 2 m s21 for radial
velocity (Yussouf and Stensrud 2010; Sobash and Stensrud
2013; Kerr and Wang 2020) are added to the synthetic observa-
tions and are assumed in the data assimilation.

b. Data assimilation and forecast system

Experiments with and without the FAT are conducted with
a 50-member ensemble data assimilation and forecast system
using DART’s ensemble adjustment Kalman filter (EAKF;
Anderson 2001) and WRF-ARW (version 3.9.1.1) for the ini-
tial conditions and forecasts. The OSSEs are completed on a
1013 1013 67 gridpoint domain with a horizontal grid spacing
of 3 km. Similar to the Truth simulations, 5-K warm bubbles
with horizontal radii of 15 km and vertical radii of 2.5 km are
added to the ensemble member’s initial model fields 2.5 km
AGL to generate storms. To create ensemble diversity, each
storm’s individual ensemble members’ warm bubbles are ran-
domly displaced up to 15 km in the i and j directions away
from the Truth’s warm bubbles following a discrete uniform
distribution. To further diversify the ensemble, vertically un-
correlated Gaussian perturbations with a standard deviation of
2 m s21 are added to the u and V wind profiles up to ∼11 km
AGL (Figs. 2b–d), which is similar to how other OSSE studies
(e.g., Kerr and Wang 2020) diversified their ensemble members.
The ensemble forecasts are then integrated forward from the

initial conditions until t = 45 min to give time for the warm
bubbles to develop into storms. To emulate the current experi-
mental WoFS, the 3-km ensemble forecasts use the NSSL two-
moment microphysics scheme (Mansell et al. 2010) with a base
cloud condensation nuclei concentration of 1250 cm23 and a
time step of 10 s. All other WRF-ARW namelist settings are
the same as the Truth’s namelist settings.

Using DART’s EAKF, the Truth’s synthetic reflectivity and
radial velocity observations are assimilated every 5 min from
t = 45 to 120 min. An adaptive prior covariance inflation scheme
(Anderson 2009) is used during DA cycling to help maintain suf-
ficient ensemble spread and prevent ensemble collapse. The hor-
izontal localization radius for experiments using the FAT is
6 km, but for experiments not using the FAT, the horizontal
localization radius is 12 km. These horizontal localization radii
produce the best results for each set of experiments. All experi-
ments and observation types use a 3-km vertical localization ra-
dius. The Gaspari–Cohn function (Gaspari and Cohn 1999) is
used for the localization weighting function. To see how the im-
pact of the FAT changes with subsequent DA cycles, ensemble
forecasts are initialized every 15 min from t = 45 min until
t = 120 min and are run until t = 180 min.

c. FAT configuration

As mentioned before, the FAT is run prior to each DA
step. The same FAT configuration is used for all FAT

FIG. 2. (a) Skew T–logp of the temperature and moisture profiles and plots of the (b) default, (c) fast, and (d) complex
hodographs used to provide the initial conditions for the Truth and ensemble simulations. In the hodographs, the thick
colored lines depict the Truth’s wind profiles for the layers 0–3000 (red), 3000–6000 (yellow), 6000–9000 (green), and
9000–12000 m (blue) AGL, and the ensemble member’s initial wind profiles are represented by the thin gray lines.
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experiments. Just as in S18, the FAT parameters were empiri-
cally tuned through brute force to determine the parameter
configuration that 1) produced some of the smallest RMSEs
for column-maximum reflectivity for a variety of individual
ensemble members’ forecasts in different scenarios without
substantially altering forecast storm sizes and 2) generally re-
sulted in the best analyses and forecasts. Relatively small ad-
justments to these parameters do not substantially change the
results. For example, using s2 = 11.0 produces similar results
as with using s2 = 10.0, but using a much larger s2, such as
20.0, results in substantially different results (not shown).
Parameter values and their descriptions used in the FAT pro-
cess are listed in Table 1. Also, we thin the forecast and ob-
served grids by using every fifth grid point when performing
the cost function minimization to decrease the computational
time needed to run the FAT. This reduction in the number of
grid points does not substantially affect the quality of the dis-
placement vectors. This quality assessment is based on compar-
ing the RMSEs between the observed and adjusted forecast
fields of column-maximum reflectivity for different thinning
factors. The thinned field of displacement vectors are inter-
polated back to the full grid before adjusting the model state
variables. By using the thinned grids, the total time of the
entire FAT process, including updating and writing out the
new state variables, is relatively small, only taking ∼1 min
for the entire ensemble on a modern HPC system since each
member can be processed in parallel.

d. Experiments

Six multiple-storm scenarios are designed to explore the
impact of using the FAT to correct various sources of storm

displacement errors (Table 2). For each scenario, a set of five
experiments are completed (Table 3). First, a no-data-assimilation
ensemble of simulations (NoDA) is integrated out to t = 180 min
to provide the background forecasts at t = 45 min for the first
analysis cycle of the DA experiments and to provide a baseline
for forecast assessment where data assimilation is not used to
correct the background forecast. To directly assess the impact
of the FAT in each scenario, DA experiments are performed
without the FAT (NoFAT). In S18, various configurations of
the FAT were tested, but for this study, the same configuration
is used for all FAT experiments. Instead, three FAT experi-
ments are run for each scenario to explore how the impact of
the FAT evolves with subsequent DA cycles. The three FAT
experiments include running the FAT for the first DA time
only (1FAT), the first five DA times only (5FAT), and all DA
times (AllFAT).

The first scenario tests the FAT in a situation where there are
three Truth storms and three ensemble storms with no initial
displacement of the ensemble mean warm bubbles’ locations
from the Truth’s warm bubbles’ locations (NoDisp; Fig. 3a). For
those experiments, the only storm displacements come from the
spread in the initial ensemble members’ warm bubble place-
ments and from any displacements that develop due to the noise
in the wind profiles (Fig. 2b). The next scenario builds on the
NoDisp experiments by adding an initial 30-km eastward dis-
placement to the warm bubble locations (Disp; Fig. 3b). The
Disp experiments are meant to simulate cases where large phase
errors exist in the initial conditions. Another scenario uses a
modified wind profile (Fig. 2c) that has a 2.78 m s21 storm mo-
tion bias (Fast; Fig. 3c), which results in a storm displacement
error of ∼30 km after 3 h of simulation. Interestingly, the

TABLE 1. FAT tunable parameter labels, values, and descriptions; “gp” is the abbreviation of grid point(s).

Parameter Value Description

so 2 dBZ Observational error standard deviation
S 50 gp Displacement magnitude limit
ks 6.0 Smoothness penalty function weight
kd 3.0 Divergence penalty function weight
km 0.1 Magnitude penalty function weight
kb 1.0 Barrier penalty function weight
s1 0.5 gp Object-merging step’s Gaussian smoother standard deviation
s2 10.0 gp Gaussian standard deviation used to form smoothed fields for first-guess field of displacement vectors
varmin 25 dBZ Threshold used on original forecast and observed fields
smthmin 1 dBZ Threshold used on the smoothed forecast and observed fields
distmax 30 gp Maximum allowable distance between object centroids
areamin 24 gp Minimum area threshold for objects
vectmin 0.05 gp State variables are updated only if the maximum final displacement vector is greater than this threshold

TABLE 2. Scenario labels and their descriptions.

Scenarios Description

NoDisp No initial displacement of the mean warm bubble locations with 5-min cycling interval
Disp Initial 30-km eastward displacement of the mean warm bubble locations with 5-min cycling interval
Fast As in NoDisp, but with a fast storm motion bias
Cyc15 As in NoDisp, but with 15-min cycling interval
Miss As in NoDisp, but with 30% of initial warm bubbles randomly removed
Complex Combination of scenarios with 5-min cycling interval
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displacement is minimal at t = 45 min similar to NoDisp likely
due to any eastward displacement being offset by, e.g., the mi-
crophysics and grid-spacing differences. The Fast experiments
are meant to mimic storm displacement errors resulting from
biases in the forecast model.

Using the same experiment design as NoDisp (Fig. 3a), we
perform another set of experiments using a cycling frequency
of 15 min (Cyc15) instead of 5 min based on results from Ying
(2019), which showed alignment correction techniques might
work better at certain cycling frequencies. In another sce-
nario, 30% of the warm bubbles are randomly removed from
NoDisp’s initial ensemble members’ fields to test the ability
of the FAT to handle an unequal number of Truth and en-
semble members’ storms (Miss; Fig. 3d). By design, ensemble
members can have 0–3 warm bubbles remaining. Even so,
only two ensemble members have no initial warm bubbles.

The final scenario tests the FAT in a more complex storm set-
ting with initially four Truth storms and three background
storms, a modified vertical wind profile (Fig. 2d), a ∼1.4 m s21

storm motion bias to the southeast, 30% of warm bubbles ran-
domly removed, and an initial 30-km westward displacement
to the warm bubble locations for the northernmost storm
(Complex; Fig. 3e). Even though the Truth and ensemble con-
tain primarily supercells, this scenario is more complex than
in the previous scenarios due to the increased storm interac-
tions, especially among the northern three Truth storms.

e. Evaluation methods

A mix of subjective and objective evaluation methods are
used to assess and compare the different experiments’ analy-
ses and forecasts. To assess the filter performance with and

TABLE 3. Experiment labels and their descriptions.

Experiments Description

Truth 250-m truth simulations
NoDA 3-km ensemble with no data assimilation
NoFAT 3-km ensemble with only EAKF DA
1FAT 3-km ensemble with EAKF DA and the FAT run prior to the first DA time
5FAT 3-km ensemble with EAKF DA and the FAT run prior to the first five DA times
AllFAT 3-km ensemble with EAKF DA and the FAT run prior to all DA times

FIG. 3. Truth and NoDA’s 25-dBZ
reflectivity contours at t = 45 min
(black and green, respectively) and
t = 180 min (dark gray and light gray,
respectively) for the various scenarios.
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without the FAT, observation-space diagnostics, including
root-mean-square innovation (RMSI), total ensemble spread
(TES), and consistency ratio (Dowell and Wicker 2009; Dowell
et al. 2011), and the number of observations assimilated are
computed for reflectivity and radial velocity in areas of ob-
served reflectivity . 10 dBZ. The equation for consistency
ratio is

CR � TES
RMSI

( )2
: (7)

Ideally, RMSI and total ensemble spread, which includes
the observation error, are quantitatively similar, which would
result in optimal consistency ratios near 1.

Two storm-based attributes}2–5-km updraft helicity (UH;
Kain et al. 2008) and column-maximum reflectivity}are used
to assess the experiments’ forecast performance. First, the
neighborhood maximum ensemble probabilities (NMEP;
Schwartz and Sobash 2017) for UH greater than 60 m2 s22 are
computed from the forecast initialization times until t = 180 min
by using a 9-km neighborhood for the maximum filter and then
smoothing using a 9-km Gaussian filter. The UH probability
swaths are subjectively compared to the location of Truth’s
UH. 1000 m2 s22. For better visual comparison and to put the
Truth’s UH fields on a similar scale to the 3-km ensembles, a
maximum filter is applied to the Truth’s UH fields using a 3-km
neighborhood. To further assess ensemble forecast spread and
accuracy, paintball plots (e.g., Skinner et al. 2018) of the ensem-
ble members’ column-maximum reflectivity . 25 dBZ at
t = 180 min are compared to the 25-dBZ contours of the Truth’s

column-maximum reflectivity. Also, the ensembles’ average
maximum UH values are computed for each forecast to illumi-
nate how the forecasts of UH intensity change with initializa-
tion time.

To provide an objective measure of forecast skill, the ensem-
ble fractions skill score (eFSS; Duc et al. 2013) is computed for
forecast column-maximum reflectivity greater than 25 dBZ using
neighborhood widths of 0, 6, 12, 24, 48, 96, and 192 km as well as
the full domain (FD). The equation for the eFSS is

eFSS � 1 2

1
N 3 M

∑N
n�1

∑M
m�1

(Po
n,m 2 Pf

n,m)2

1
N 3 M

∑N
n�1

∑M
m�1

(Po
n,m)2 1

∑N
n�1

∑M
m�1

(Pf
n,m)2

[ ] , (8)

where N and M are the number of spatial windows and en-
semble members, respectively; and Po and Pf are the observed
and forecast fractions, respectively, of grid points exceeding
the reflectivity threshold within each spatial-ensemble neigh-
borhood window. The eFSS values for each ensemble forecast
are aggregated together for each neighborhood width. An
eFSS = 1 indicates a perfect forecast. For a “target” skill,
FSSuniform from Roberts and Lean (2008) is computed for
each forecast period and is the halfway point between the
eFSS for a random forecast, which is the observed base rate,
and a perfect forecast (eFSS = 1). eFSS values , FSSuniform
indicate the forecast might not provide useful information to
the end user (e.g., operational forecaster). Also, while column-
maximum reflectivity is used to compute eFSS for this study,

FIG. 4. Observation-space diagnostics and the number of observations assimilated for (a)–(d) reflectivity and (e)–(h) radial velocity are
shown. In (b) and (f), the black dashed line represents the observation error. In (c) and (g), the black dashed line indicates an ideal consis-
tency ratio of 1.
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similar results can be achieved using 2–5-km UH. However,
computing eFSS for 2–5-km UH is not as straightforward as
for reflectivity since a nonlinear relationship exists for UH be-
tween the 250-m and 3-km grids making it more difficult for a
direct comparison.

4. Results

a. No initial displacement

This first set of experiments explores the impact of the
FAT in a scenario where the ensemble members’ individual
storm locations are displaced from the Truth storms, but the

ensemble mean storms’ locations are only minimally dis-
placed. Starting with observation-space diagnostics, all FAT
experiments have smaller RMSIs for reflectivity than NoFAT
for most analysis times (Fig. 4a). Also, the RMSIs and error
growth rates are substantially smaller for the FAT experiments
during the first few DA cycles, indicating the FAT helps “spin
up” model storms faster. Except from t = 60 to 80 min, the
three FAT experiments generally have less ensemble spread
than the NoFAT experiment (Fig. 4b). Also, the FAT experi-
ments have substantially less spread than NoFAT for the first
three DA times due to correcting the initial storm displace-
ments. NoFAT’s larger spread for those first few DA cycles
results in it having higher consistency ratios for reflectivity

FIG. 5. Probabilities of 2–5-km UH . 60 m2 s22 (colored shading) and ensemble paintballs of column-maximum reflectivity . 25 dBZ
at t = 180 min (gray shading) for all NoDisp experiments’ forecasts. The Truth’s maximum-filtered tracks of UH. 1000 m2 s22 (black con-
tours) and column-maximum reflectivity. 25 dBZ (dark gray contour) are overlaid. The ensemble average maximum UH value for each
forecast is annotated in the bottom right of each subplot.
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for those analysis times (Fig. 4c). But, beyond the first few DA
cycles, the FAT experiments generally have consistency ratios
closer to one. By t = 120 min, all experiments have consistency
ratios near 0.5, which indicates they are all underdispersive.
Using the FAT for all DA times results in the most radar
observations being assimilated, while the 1FAT and 5FAT
experiments result in the leveling-off of the total number
of reflectivity observations being assimilated}similar to
the NoFAT experiment}once the FAT ceases to be used
(Fig. 4d).

For radial velocity, the AllFAT experiment generally re-
sults in larger RMSIs and error growth rates than NoFAT and
the other two FAT experiments, especially after t = 90 min
(Fig. 4e). Similar to reflectivity, the FAT experiments have
less spread than NoFAT until t = 55 min or so due to correct-
ing the initial storm displacements, but the experiments have
similar spread for the remaining analysis times (Fig. 4f).
With lower RMSIs and similar spread, NoFAT has higher
consistency ratios for most times, while AllFAT has the
lowest consistency ratios due to larger RMSIs (Fig. 4g).
Also, 1FAT and 5FAT have larger consistency ratios than
AllFAT with 5FAT having similar consistency ratios as
NoFAT starting at t = 75 min. While all experiments assimi-
late a similar number of radial velocity observations, All-
FAT assimilates the fewest (Fig. 4h). In short, the continuous
application of the FAT results in smaller errors for reflectivity

and more reflectivity observations being assimilated but also
results in larger errors for radial velocity and fewer radial
velocity observations being assimilated. This result is consis-
tent with the fact that the FAT corrects the model state using
only reflectivity observations and not radial velocity observa-
tions. How these observation-space results translate into fore-
casts of storms will be explored next.

The NoDA ensemble’s swaths of probabilities of
UH . 60 m2 s22 reveal the DA experiments are starting
from a background forecast with UH probabilities greater
than 50% existing along and just north of the Truth’s UH
tracks for all three storms (first row in Fig. 5). Even with
those good priors, however, NoFAT struggles to assimilate
the Truth storms into the model until after 30–45 min of cycling
(second row in Fig. 5). After the first DA, NoFAT already has
substantially smaller UH probabilities and average maximum
intensities than NoDA, and its probabilities and intensities bot-
tom out with the forecast initialized at t = 60 min. Subsequent
forecasts from NoFAT redevelop the storms in the model. These
NoFAT results agree with previous radar-DA OSSE studies, such
as Xue et al. (2006) and Yussouf and Stensrud (2010), which found
that it takes ∼10 DA cycles to start producing accurate analyses
and forecasts of storms. By correcting the ensemble members’ in-
dividual storm displacements prior to DA, all of the FAT experi-
ments’ forecasts produce accurate, high-probability UH swaths
with intense UH values for all three storms (last three rows in

FIG. 6. Average eFSS values for the NoDisp experiments’ column-maximum reflectivity for each neighborhood width and forecast period.
Black dashed line represents the FSSuniform, or target skill.
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Fig. 5). 1FAT’s forecasts initialized at t = 60 and 75 min have
smaller UH probabilities and intensities than 5FAT and AllFAT
(third row of Fig. 5), but improve upon NoFAT for the same
times. AllFAT’s forecasts perform well until the final initialized
forecast, which exhibits lower probabilities along with a deviant
motion for the middle storm (last row in Fig. 5). 5FAT’s forecasts
of UH consistently perform well for all initialization times, in-
cluding the final initialized forecast (fourth row in Fig. 5).

From an objective perspective on the forecasts, the FAT
experiments are also more skillful at forecasting column-
maximum reflectivity than the NoFAT experiment for this
NoDisp scenario (Fig. 6). Similar to its UH forecast results,
NoFAT’s eFSS values substantially decrease at all neighbor-
hood widths between the forecast initialized at t = 45 min
and the forecast initialized at t = 60 min (Figs. 6a,b). After
t = 60 min, NoFAT’s skill increases for subsequently initialized

forecasts (Figs. 6c–f). Not surprisingly, all three FAT experi-
ments’ forecasts are more skillful than the NoFAT forecasts
for most initialization times and scales. Also, the benefit of
running the FAT even once is evidenced by the FAT experi-
ments having more skill than NoDA, which is already skillful,
at most scales smaller than the full domain (Fig. 6a).

In contrast to those straightforward outcomes, some sur-
prising results are evident. First, only running the FAT once
(1FAT) largely prevents the rapid decrease in skill from t = 45 min
to t = 60 min. Second, while AllFAT produces the most skillful
forecasts for neighborhood widths up to 48 km, its struggle
with the middle storm in the final forecast, as shown in Fig. 5,
results in the smallest eFSS values at neighborhood widths
greater than 96 km (Fig. 6f). This result indicates that while using
the FAT every analysis cycle might lead to more skillful reflectiv-
ity forecasts, especially at smaller scales, the repeated use of the

FIG. 7. As in Fig. 5, but for the Disp experiments.

S T RA TMAN AND PO TV I N 2043AUGUST 2022

Brought to you by U.S. Department Of Commerce, Boulder Labs Library | Unauthenticated | Downloaded 08/12/22 03:34 PM UTC



FAT may eventually degrade forecasts of storms. This forecast
degradation is at least partly due to the constant use of the FAT
leading to minimal ensemble spread. Also, once the FAT stops
being used prior to each DA cycle, as in 1FAT and 5FAT,
the skill at larger scales is maintained, even though the skill
at the smaller scales decreases somewhat. The decrease in
skill at the smaller scales for 1FAT and 5FAT is due to small
displacements developing after ceasing to run the FAT.
Overall, though, the beneficial impact of the FAT is already
apparent in this simple multiple-storm scenario}especially
at earlier forecast initialization times.

b. Initial displacement

For the Disp set of experiments, a 30-km eastward displace-
ment is added to the initial location of the warm bubbles. The
observation-space diagnostics for these experiments are similar
to NoDisp’s results with the FAT leading to smaller errors for re-
flectivity, larger errors for radial velocity, and more reflectivity
observations being assimilated (not shown). For UH probabilities
and intensities, the results are even more striking than for the
NoDisp experiments (Fig. 7). NoFAT weakens and dissipates
the initial storms during the first 15–30 min of cycling just like for
NoDisp, but it struggles to assimilate the storms back into the
analyses and forecasts during the remaining cycles (second row
in Fig. 7). The initial displacement increases the time needed for
NoFAT to “catch up” with the FAT experiments.

Even with the initial displacement added to the storm locations,
the three FAT experiments perform just as well as NoDisp’s FAT
experiments (bottom three rows in Fig. 7), but there are some dif-
ferences. 1FAT’s UH probabilities are lower for some of the
storms in the forecasts initialized from t = 60 min to t = 105 min.
AllFAT still has an issue with the middle storm during the final
initialized forecast. Also, it has lower probabilities in the forecast
initialized at t = 75 min. Of the three FAT experiments, 5FAT is
the least impacted by the initial displacement error. Also, most of
the average maximumUH intensities for all three experiments are
up to 5%weaker.

Not surprisingly, the eFSS results agree with our visual assess-
ment of the UH probability swaths and reflectivity paintball con-
tours. NoFAT’s eFSS values depict a rapid decrease in skill by
t = 60 min followed by a slow recovery in skill through the final
forecast, when the target skill is once again reached at all neigh-
borhood widths (Fig. 8). Interestingly, NoDA’s eFSS results high-
light the impact of displacement errors on the eFSS values, which
are substantially less for neighborhoods widths less than ∼60 km
when compared to the FAT experiments and NoDisp’s NoDA
results. Similar to the NoDisp results, increased usage of the
FAT yields consistently more skill at the smaller neighborhood
widths. This result is visually apparent with the paintball contours
in Fig. 7. For example, 1FAT’s reflectivity paintballs for the final
forecast are more displaced from the Truth’s reflectivity contours
than 5FAT’s paintballs, and 5FAT’s paintballs are more dis-
placed than AllFAT’s paintballs. However, for neighborhood

FIG. 8. As in Fig. 6, but for the Disp experiments.
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widths greater than ∼96 km, 5FAT tends to be the most
skillful. The decrease in skill at the largest scales in the last
forecast for AllFAT is once again due to its decrease in
forecast skill with the middle storm. In summary, these
Disp experiments highlight the negative impact of initial
storm displacement errors on a forecast system and the
FAT’s ability to mitigate those negative impacts.

c. Fast storm motion bias

Instead of adding an entire 30-km displacement to the warm
bubbles in the initial conditions, the Fast set of experiments
slowly adds in the 30-km displacement by adding a storm
motion bias to the initial wind profiles. The observation-space
diagnostics’ results (not shown) are similar to the NoDisp ex-
periments, except for larger errors and more ensemble spread
for all experiments. Thus, the consistency ratios are still similar
between the two sets of experiments. At t = 45 min, the

ensemble mean storm locations are minimally displaced similar
to the NoDisp storms (Figs. 3a,c), so besides the longer UH
probability swaths, the UH probabilities and intensities are
also similar for the first forecast for both sets of experiments
(first column in Fig. 9). Again, NoFAT dissipates the original
storms in the background forecast and gradually regenerates
them over the remaining analyses and forecasts (second row in
Fig. 9), yielding decent forecasts for the three storms in the fi-
nal three forecasts. 1FAT does well for the first three forecasts,
but its forecast performance decreases for some of the storms
in the last three forecasts (third row in Fig. 9). Conversely,
5FAT and AllFAT both handle the storm motion bias rela-
tively well for all forecasts (last two rows in Fig. 9).

After a rapid decrease in skill between t = 45 min and
t = 60 min, NoFAT’s skill recovers and is similar to 1FAT’s
skill at all neighborhood widths for the forecast initialized at
t = 75 min and similar to 5FAT and AllFAT’s skill at all

FIG. 9. As in Fig. 5, but for the Fast experiments.
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neighborhood widths for the final three forecasts (Fig. 10).
1FAT is the least skillful experiment at all neighborhood
widths for the final three forecasts. AllFAT is the most skillful
at neighborhood widths less than ∼48 km for all forecasts,
though 5FAT is nearly as skillful as AllFAT. In the final fore-
cast, NoFAT exhibits the highest skill for scales greater than
∼96 km (Fig. 10f), but that higher skill is due to having a
lower frequency bias as a result of erroneously having more
spurious convection, as evidenced in Fig. 9. Even so, these
Fast results show that the use of the FAT throughout the DA
period is effective at mitigating the impacts of large storm mo-
tion biases on analyses and forecasts of storms.

d. 15-min cycling interval

This next set of experiments explores the impact of cycling
less frequently by starting from the NoDisp background fields
(Fig. 3a) and using a cycling frequency of 15 min instead of
5 min. Compared to the other NoFAT experiments, NoFAT’s
initial decrease in forecast performance for Cyc15 is less severe
and slower to recover (second row in Fig. 11). For example,
NoFAT’s UH probabilities and intensities for the forecast
initialized at t = 60 min are higher for Cyc15 (second row in
Fig. 11) than NoDisp (second row in Fig. 5) likely due to not
undesirably forcing the model state toward the observations as
frequently as for 5-min cycling. Also, based on its lower proba-
bilities and intensities for the forecast initialized at t = 75 min,

NoFAT’s subsequent recovery is also slower than for NoDisp’s
NoFAT experiment due to fewer DA times to spin the model
up. Even so, the NoFAT experiment performs similarly well as
the FAT experiments for the final three forecasts. The three
FAT experiments perform well for all forecasts, as they did for
NoDisp (last three rows in Fig. 11). In fact, AllFAT is able
to maintain accurate forecasts of the middle storm through the
final forecast.

The eFSS results for Cyc15 generally match the subjec-
tive assessment of the UH and reflectivity forecasts and are
overall similar to NoDisp’s eFSS results (Fig. 12). As for
NoDisp, NoFAT’s forecast skill decreases from t = 45 min
to t = 60 min, but NoFAT’s forecast is more skillful at
t = 60 min when cycling less frequently (Fig. 12b). Con-
versely, NoFAT’s forecast initialized at t = 75 min is less
skillful than when cycling more frequently (Fig. 12c). Also,
unlike the NoDisp experiments, all three FAT experiments’
forecasts are more skillful than the NoFAT’s forecasts at all
scales for the final three forecasts. In short, the model anal-
yses and forecasts take longer to recover from the storm
displacement errors when cycling less frequently. Also, the
FAT is able to minimize this dependence on cycling fre-
quency and continue to provide accurate forecasts.

e. Initially missing storms

All of the previous scenarios started out with an equal
number of observed and forecast storms, so even though a

FIG. 10. As in Fig. 6, but for the Fast experiments.
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mismatch in the number of storms did occur for some ex-
periments at later DA times, the previous experiments did
not test the improved capability of the FAT to handle cases
with an initial mismatch in the number of storms. The Miss
scenario tests that new capability by randomly removing
30% of the initial warm bubbles. As in NoDisp, NoFAT has
a rapid decrease in forecast quality within the first 15 min of
DA cycling and recovers by t = 90 min to produce three de-
cent forecasts (second row in Fig. 13). While 1FAT’s UH
probabilities and intensities are substantially smaller than
in NoDisp for the forecasts initialized at t = 60 min and
t = 75 min (third row in Fig. 13), its UH probabilities and in-
tensities for these two forecasts remain larger than for No-
FAT. Also, 1FAT’s last three forecasts perform similarly
well to the other NoFAT and FAT experiments. Both
5FAT and AllFAT have larger UH probabilities and

intensities than NoFAT and 1FAT through the first three
forecasts (bottom two rows in Fig. 13), while 5FAT consis-
tently has the highest probabilities of UH for all three
storms in the final four forecasts. Conversely, AllFAT gen-
erally has smaller probabilities of UH than the other DA
experiments for all three storms.

While all experiments exhibit a decrease in skill between
the forecasts initialized at t = 45 min and t = 60 min, No-
FAT experiences the largest decrease in skill (Fig. 14b).
Starting with the forecast initialized at t = 75 min, NoFAT’s
eFSS values exceed the target skill at all neighborhood
widths again and are similar to the eFSS values of the
AllFAT and 5FAT at most neighborhood widths
(Figs. 14d–f). 1FAT is generally the least skillful for the last
four forecasts, especially the forecasts initialized at t = 75 min
and t = 120 min. Except for the forecast initialized at

FIG. 11. As in Fig. 5, but for the Cyc15 experiments.
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t = 75 min, AllFAT is the most skillful at neighborhood widths
less than ∼24 km. While 5FAT outperforms the other FAT ex-
periments at the largest scales for the final four forecasts, its
skill is no better than NoFAT’s skill at those scales. Even so,
the FAT is still able to help mitigate the decrease in skill dur-
ing the spinup period and help provide more skill at the small-
est scales for all forecasts.

f. Complex storm scenario

This final set of experiments adds realism to the simula-
tions by increasing storm interactions through the addition
of another storm and by starting from a decent background
for one of the storms (the southern one) but not for the
others. As a result, NoFAT produces good UH and reflec-
tivity forecasts for the southern storm, but struggles with
the other storms, especially the northern storm, which had
the initial westward displacement (second row in Fig. 15).
As with the other scenarios, NoFAT exhibits a decrease in
forecast performance from t = 45 min to t = 60 min. Interest-
ingly, that decrease is not evident with the southern storm
in this case. NoFAT also produces good forecasts of the
two middle storms starting at t = 90 min. In fact, NoFAT
does well in predicting the demise of the second-most
southern storm. Conversely, NoFAT fails to ever redevelop
the northern storm.

From a subjective perspective, all three FAT experiments
produce similarly better forecasts of UH and reflectivity than
NoFAT, based on the higher UH probabilities along the
Truth’s UH tracks and the reflectivity paintballs filling in
the Truth’s reflectivity contours at the end of the forecast
periods (Fig. 15). It is clear that the FAT experiments do
much better in forecasting the northern storm than NoFAT
due to correcting the initial storm displacement errors. In-
terestingly, at t = 45 min, the FAT much better predicts
one of the middle two storms (the southern one) than the
other, even though the initial ensemble-mean warm bubble
was located halfway between the two middle Truth warm
bubbles. Starting with forecasts initialized at t = 60 min, all
three FAT experiments predict both of these middle
storms well. For the southernmost storm in the domain, the
three FAT experiments have lower UH probabilities than
NoFAT in the forecasts initialized at t = 60 min and
t = 75 min.

The eFSS values for column-maximum reflectivity agree
with the subjective evaluation}all three FAT experiments
are more skillful than the NoFAT experiment at forecasting
the Complex scenario (Fig. 16). Starting with the forecast ini-
tialized at t = 75 min, 1FAT and 5FAT are more skillful than
AllFAT for all neighborhood widths, indicating again that
correcting the storm displacement errors at every DA step
may not be optimal in all cases. Even so, all three FAT

FIG. 12. As in Fig. 6, but for the Cyc15 experiments.
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experiments have substantially more skill than NoFAT for
most scales and forecasts in this more complex scenario.

5. Summary and discussion

This study expands on the work by S18 by implementing an
object-based merging and matching technique into the FAT
to handle multiple storms and testing the updated FAT within
an idealized OSSE framework using multiple-storm scenarios.
As in S18, results from these new experiments reveal the po-
tential benefits to ensemble analyses and forecasts of using
the FAT to correct storm displacement errors prior to data as-
similation. All three FAT experiments in this study performed
subjectively and objectively better than NoFAT in most of
the investigated scenarios. Even in the no-initial-displacement

scenario, where the ensemble mean storm displacements were
negligible, correcting the individual ensemble members’ storm
displacement errors with the FAT led to improved UH and
reflectivity forecasts. These forecast improvements were larg-
est at early assimilation cycles, where the NoFAT forecasts in
all scenarios exhibited a decrease in forecast quality lasting for
several DA cycles, in agreement with previous OSSE studies.
Except for the Fast case, just one completion of the FAT, as in
1FAT, resulted in markedly improved analyses and forecasts
over the NoFAT experiments. Additionally, running the FAT
for the first five DA cycles, as in 5FAT, resulted in the best
overall performance of all the experiments. At the smaller
scales though, the AllFAT experiment showed that continu-
ously running the FAT results in more skillful forecasts of
column-maximum reflectivity at smaller scales.

FIG. 13. As in Fig. 5, but for the Miss experiments.
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Some more nuanced results also emerged. First, as men-
tioned above, 1FAT performed well in all scenarios, except
for the Fast scenario, which features a large, but reasonable,
storm motion bias. The Complex scenario also featured an
added storm motion bias, but EAKF DA was able to handle
this storm motion bias after running the FAT only once.
While both scenarios have storm motion biases, the Complex
scenario’s storm motion bias is about half the magnitude of
the Fast scenario’s storm motion bias. This result indicates
that in cases of relatively minor storm motion biases, it may
be only necessary to run the FAT once, or at least less often,
during DA cycling. In addition, some of the experiments
showed that continuously running the FAT can cause issues.
For example, for the NoDisp and Disp cases, AllFAT has a
poorer final forecast for the middle storm than 1FAT and
5FAT. Based on additional experiments where the radar loca-
tion was shifted ∼30 km either to the south or east (not
shown), this issue is not due to the location of the radar in the
domain.

The crux of this AllFAT problem is likely hinted at by
the NoDisp observation-space diagnostics for radial veloc-
ity observations, where AllFAT has higher RMSIs than the
other experiments for most analysis times. This issue is
likely due to the FAT solving for the displacement vectors
using only column-maximum reflectivity observations.
Thus, the FAT may suboptimally correct the locations of

the model storms in instances where optimizing the align-
ment with the observed column-maximum reflectivity pro-
duces misalignment with the observed radial winds. For
example, given the differences in the storm structures and
shapes between the Truth simulations and the ensembles,
which are mostly due to the differences in grid spacing and
microphysics scheme, the storm-relative locations of the ro-
tating updrafts may be different for the Truth and ensemble
storms (Fig. 17), resulting in larger innovations and fewer
radial velocity observations being assimilated than for the
NoFAT experiments. This issue is also likely the culprit to
the lower UH probabilities for AllFAT in the Miss sce-
nario. Since fewer radial velocity observations are being as-
similated, AllFAT likely struggles to maintain the storms
that are being added by the assimilation of reflectivity ob-
servations. Without strong, rotating updrafts to support the
three storms being assimilated, more of the storms in All-
FAT’s forecasts weaken and eventually die off.

One possible way to help mitigate these issues for AllFAT
is to use radial velocity observations along with the reflectivity
observations in the FAT’s cost function – something that will
be explored in a future study. Another potential solution is to
use a finer ensemble grid, such as 1 or 2 km, so that the fore-
cast storms are more similar in structure to the observed
storms. Also, this study used the same observation error stan-
dard deviation in the FAT’s residual cost function as was used

FIG. 14. As in Fig. 6, but for the Miss experiments.
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in creating the synthetic reflectivity observations. However,
using a small observation error standard deviation (i.e.,
2 dBZ) in the residual cost function results in a closer fit of
the forecast reflectivity to the observed reflectivity. Thus, us-
ing a larger observation error standard deviation, such as
5 dBZ, could introduce enough uncertainty into the FAT to
help prevent this issue of overfitting the reflectivity observa-
tions without needing to use the radial velocity observations
in the FAT.

The Cyc15 experiments demonstrated that the issues with
AllFAT could also potentially be mitigated by cycling less
frequently. The Cyc15 experiments showed the FAT may
be more beneficial and produce better forecasts at longer
(than 5 min) cycling intervals, such as the 15-min interval
used by the experimental WoFS. These results support the
conclusion in Ying (2019) that there may be an optimal

cycling interval for EnKF DA systems coupled with ali-
gnment techniques. Importantly, the fact that AllFAT at
15-min cycling is better than NoFAT and AllFAT at 5-min
cycling suggests that the use of the FAT or other alignment
techniques could reduce the cycling frequency requirement
for storm-scale ensembles.

Additional experiments were run using the FAT every
15 min while cycling with EAKF every 5 min (not shown).
Those experiments also show promise in mitigating any is-
sues with continuously running the FAT. These results
along with the 1FAT and 5FAT results and the Cyc15 re-
sults motivate the need for an adaptive FAT approach. In a
way, the FAT presented here is already adaptive with the
minimum displacement vector and decreasing-RMSE re-
quirements, which can “adaptively” determine when not to
adjust the model state variables with the displacement

FIG. 15. As in Fig. 5, but for the Complex experiments.
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vectors. However, those requirements are on a per-ensemble-
member-basis, so some members’ background forecasts
will be adjusted while other members’ forecasts will not be
adjusted at the same time. Thus, a future research path to
explore is to adaptively determine when the FAT should
be run for the entire ensemble. For example, ensemble
mean innovations could potentially be used to determine
when the FAT should run; the FAT probably should not
run when the mean innovations are large for radial velocity
but small for reflectivity.

So far, the FAT has only been tested in an idealized frame-
work using OSSEs with homogeneous environments and iso-
lated supercell storms. In future studies, the FAT will be
further tuned and tested using real-data cases with a DA and
forecast system similar to the current experimental WoFS
(Jones et al. 2020). Testing the FAT with multiple real-data
cases and convective modes will give a better sense of the
benefits of correcting storm displacement errors in real-world
ensembles, whose forecast errors may not be well approxi-
mated by OSSEs. These real-data tests could also reveal po-
tential issues with correcting storm displacement errors in
nonhomogeneous environments. For example, the FAT could
potentially introduce imbalances in the model state wind
fields by introducing spurious areas of convergence and diver-
gence. Also, while the FAT as designed here should handle
non-supercell-shaped storms well, more thorough tests with

more complex storm shapes and modes have yet to be com-
pleted and could require additional modifications to the FAT
methodology. Before running real-data experiments, the FAT
will need to be further modified to account for terrain effects,
as implemented by Nehrkorn et al. (2014). Additionally, we
are interested in comparing the FAT-EnKF system with local-
ized particle filter (LPF) and hybrid LPF-EnKF DA systems
(Grooms and Robinson 2021; Poterjoy 2022) since the FAT
and PF methods both address non-Gaussianity in different
ways.
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